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Short Papers

Twofold Mur’s First-Order ABC
in the FDTD Method

Jun-Fa Mao

Abstract— In this paper, it is shown that the reflection error of
Mur’s first-order absorbing boundary condition (ABC) can be canceled
effectively by applying the ABC twice to an electromagnetic (EM) field
on two diagonally neighboring nodes on thex–t, y–t, and z–t planes.
Following this idea, we have developed a twofold Mur’s first-order ABC
(TMFABC), which is efficient to absorb both propagative and evanescent
EM waves and very convenient for implementation to multilayered
structures. TMFABC improves Mur’s first-order ABC more effectively
at lower frequencies. This is very important because most energy of a
high-speed pulse is concentrated at lower frequencies.

Index Terms—Absorbing boundary condition, FDTD.

I. INTRODUCTION

Solving Maxwell’s equations in the time domain is a critical
step in various electromagnetic (EM) problems such as scattering,
propagation, modeling of microwave components, and high-speed
interconnects of integrated circuits. In the past decade, the most
commonly used method for the solution is Yee’s finite-difference
time-domain (FDTD) method [1]. For EM problems in open space, ar-
tificial absorbing boundary conditions (ABC’s) have to be introduced
to truncate the boundless computation domain. With the traditional
ABC’s such as Mur’s ABC’s of one-way approximation of a wave
equation [2], an accurate solution is available only when the artificial
boundary is put sufficiently far away from the scatterer. Recently,
two new ABC’s have been introduced. One is the dispersive boundary
condition [3], [4] based on Higdon’s ABC [5]. Another is the perfectly
matched layer (PML) [6], which seems to be the most powerful ABC
to absorb propagative waves so far.

Myr’s first- and second-order ABC’s have been widely used in
various applications in the past ten years because these ABC’s
are well built and very convenient for implementation. However,
both Mur’s first- and second-order ABC’s are not satisfactory for
absorbing obliquely incident and evanescent waves. Thus, some work
has been done to improve the absorption efficiency [7], [8]. In the
super-absorbing algorithm [7], an ABC is separately applied to the
E- and H-fields at two neighbor nodes on the boundary, and an
error-cancellation procedure is then used to reduce the reflection.
In [8], Mur’s second-order ABC is optimized by choosing the
best values for the adjustable parameters in the ABC. Generally
speaking, Mur’s second-order ABC is more efficient in absorbing
propagative waves, but Mur’s first-order ABC has been used more
frequently in practical applications because it is much easier for
implementation and needs no special treatment at corner nodes and
for multilayered structures. In this paper, we have developed a
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Fig. 1. Field nodes ofEy near the boundaryx = Nx�x.

twofold Mur’s first-order ABC (TMFABC) based on an assumption
that the reflection coefficients of an EM field due to an imperfect
ABC are the same on two diagonally neighbor nodes on thex–t,
y–t, andz–t planes. In TMFABC, we apply Mur’s first-order ABC
twice to an E-field on two diagonally neighbor nodes such as
(i�x; j�y; k�z; m�t) and((i� 1)�x; j�y; k�z; (m� 1)�t)

on the x–t plane. Then the reflection errors are canceled based
on this assumption. The idea of error-cancellation in TMFABC
is similar with that in the super-absorbing algorithm in [7], but
TMFABC has several advantages. First, TMFABC is more simple and
convenient for implementation in three-dimensional (3-D) problems.
Second, TMFABC can be applied at all nodes of the entire FDTD
mesh while the super-absorbing algorithm fails at some special
nodes near the mesh corners in 3-D problems. Last, we have
found that the absorption efficiency of TMFABC is better than that
of the super-absorbing algorithm of Mur’s first-order ABC when
applied to 3-D microstrips, and that TMFABC is also efficient to
absorb evanescent waves. An application example of microstrip
line analysis is given to demonstrate the performance improvement
of TMFABC for absorbing EM waves. The example shows that
TMFABC improves Mur’s first-order ABC more effectively at lower
frequencies, which is very important because most energy of a
high-speed pulse is concentrated at lower frequencies. The voltage
definition by linear integration of the electrical field is recommended
for modeling high-speed interconnects when the TEM model is no
longer satisfactory.

II. TWOFOLD MUR’S FIRST-ORDER ABC

The TMFABC developed in this paper is based on an assumption
that the reflection coefficients of an EM field due to an imperfect
ABC are the same at two diagonally neighbor nodes on thex–t, y–t,
and z–t planes. Several nodes ofE-field Ey near the boundary at
x = Nx�x on thex–t plane are shown in Fig. 1. LetEi; j; k; m(1)

y

denote theEy at x = i�x; y = j�y; z = k�z, and t = m�t

obtained by Yee’s FDTD algorithm,Ei; j; k; m(2)
y denote theEy at

the same node obtained by an ABC, and then from the assumption
we have

E
N ; j; k;m(1)
y

E
N ; j; k;m(2)
y

=
E
N �1; j; k; m�1(1)
y

E
N �1; j; k; m�1(2)
y

= �: (1)
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When Mur’s first-order ABC is considered,� in (1) can be obtained
from knownEy at inner nodes, shown in (2) at the bottom of this
page, where

� =
c�t��x

c�t+�x
(3)

in which c = c0=�
0:5
e� is the propagation velocity of EM waves which

is adjustable in Mur’s first-order ABC, where�e� is the effective
dielectric constant andc0 is the velocity of light in vacuum. Thus,
the value ofEN ; j; k;m(1)

y on the boundary can be calculated by

E
N ; h; k;m(1)
y = �E

N ; j; k; m(2)
y

= �(E
N �1; j; k;m�1(1)
y + �E

N �1; j; k; m(1)
y

� �E
N ; j; k;m�1(1)
y ) (4)

in which E
N ; j; k; m(2)
y denotes theEN ; j; k; m

y from Mur’s first-
order ABC. Equation (4) is just the expression of TMFABC in this
paper forEy at the boundary ofx = Nx�x. The expressions of
TMFABC for other EM fields at other boundaries can be derived in
a similar way.

For any useful ABC,� should have a value of about one. Our
experience with various applications suggests that� <= 1:02 (which
means that when� is found to be larger than 1.02,� is then set to
1.02) in practical use of TMFABC in order to guarantee its stability.
We have found that if the absolute value of� is allowed to be larger
than 1.5, TMFABC may sometimes be instable. This is because the
denominator of (2) contains transient field values and sometimes can
be very small (especially at the early period of FDTD simulation
when the physical wavefront has not arrived at the boundary), so�

may have an extremely large absolute value, which would produce
increasingly large oscillation of the computed EM fields from (4).

Like in the super-absorbing algorithm [7], the basic idea in
TMFABC to improve an ABC is error cancellation by using the ABC
twice. However, the procedure of error cancellation in TMFABC is
much simpler than that in the super Mur’s first-order ABC, especially
for 3-D problems. On the other hand, from (2), (4), and Fig. 1, we
can see that TMFABC can be applied at any node of the FDTD mesh.
This is true even for inhomogeneous structures such as multilayered
microstrip lines.

The absorption efficiency of TMFABC depends on the reliability of
the assumption on which TMFABC is based. Suppose	i; j; k(1)(!)

and 	i; j; k(2)(!) are the EM field atx = i�x, y = j�y, and
z = k�z in the frequency domain obtained by Fourier transform of
the FDTD simulation result and by Fourier transform of the result
from an ABC, respectively,Ri; j; k(!) is the reflection coefficient of
the ABC at angular frequency!, where we have

	i; j; k(2)(!)

	i; j; k(1)(!)
= 1�R

i; j; k
(!) (5)

	i+1; j; k(2)(!)

	i+1; j; k(1)(!)
= 1�R

i+1; j; k
(!): (6)

We know that the reflection coefficient of Mur’s first-order ABC
is (1 � cos(�))=(1 + cos(�)), where� is the incident angle of the
EM waves to be absorbed. Usually, the space-step�x in FDTD is
much shorter than the wavelength even at the highest frequency,
so the incident angle� at spatial points(i�x; j�y; k�z) and
((i+1)�x; j�y; k�z) can be considered approximately the same,

and the right-hand sides of (5) and (6) are also the same, which are
denoted asQ(!) below. From (5) and (6) we can get

	
i; j; k(2)

(t) = q(t)
�

	
i; j; k(1)

(t) (7)

	
i+1; j; k(2)

(t) = q(t)
�

	
i+1; j; k(1)

(t) (8)

where “�” denotes a convolution,q(t) is the inverse Fourier transform
of Q(!), and the other time-domain terms in (7) and (8) are also the
inverse Fourier transforms of the relevant frequency-domain terms
in (5) and (6). If the dispersive property of EM wave propagation
is not obvious,Q(!) is nearly independent of! and q(t) can be
approximated by a delta function�(t). Then, from (7) and (8) we
have

	i; j; k(2)(t)

	i; j; k(1)(t)
=

	i+1; j; k(2)(t)

	i+1; j; k(1)(t)
: (9)

Note that (1) of the assumption is different from (9). However, if
(9) is a good approximation, (1) will be a better one because in the
FDTD algorithm, the value of an EM field at node(i�1; j; k; m�1)
is generally closer to the value at(i; j; k; m) than that at(i �
1; j; k; m) if the EM wave propagates in the+x-direction. For other
kinds of ABC’s, the assumption (1) is also found to be reasonable, but
not discussed in detail in this paper. From the above discussion we can
also conclude that TMFABC improves Mur’s first-order ABC more
effectively at lower frequencies. This is very important because most
energy of a high-speed pulse is concentrated at lower frequencies.
The reason TMFABC is more efficient at lower frequencies is that at
lower frequencies the dispersive property of EM wave propagation
is less obvious and the assumption (1) on which TMFABC is based
is more reasonable.

III. A PPLICATION EXAMPLE

In this section, an application example of microstrip line analysis
is given to illustrate the absorption efficiency of TMFABC. The strip
width is 0.15 mm, dielectric thickness is 0.1 mm, and dielectric
constant is 13.0. In the FDTD solution, we set�x = �y = 0:025

mm, �z = 0:05 mm (thez-axis is along the longitudinal direction
of the microstrip line) and�t = 0:5�x=c0, and set0 =< � <=

1:02 for TMFABC. The excitation signal is a Gaussian pulse. The
microstrip line is so long that the reflective waves from the far-end
boundary do not reach the near-end boundary before the rear tail
of sampled EM fields vanishes. On the side boundaries and the far-
end boundary, Mur’s first-order ABC, TMFABC, and super Mur’s
first-order ABC are separately used, but on the top boundary near
which the EM fields are mostly evanescent, only TMFABC is used
because other ABC’s cannot efficiently absorb evanescent waves.
The average reflection coefficients of the voltage (defined as the
integration ofEx under the metal strip center) due to these ABC’s
in the frequency range of0 200 GHz are shown in Fig. 2 as
functions of the effective dielectric constant(�e� ). It is recommended
to use the linear electrical-field integration definition instead of the
power–current definition for the voltage when modeling microstrip
lines used as high-speed interconnects in integrated circuits for three
reasons. The first reason is that the voltage definition for interconnects
must be the same as that for lumped circuit elements. Certainly the
linear electrical-field integration definition gives more physical insight
about the behavior of lumped circuit elements such as MOS. The
second reason is that for multiconductor interconnects, it is difficult

� =
E
N �1; j; k; m�1(1)
y

E
N �2; j; k; m�2(1)
y + �(E

N �2; j; k;m�1(1)
y �E

N �1; j; k;m�2(1)
y )

(2)
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Fig. 2. Average reflection coefficients of three ABC’s as functions of the
adjustable effective dielectric constant in the example.

Fig. 3. Reflection coefficients of three ABC’s as functions of the frequency
in the example.

to uniquely decide the integral area in the power–current definition for
voltage on different conductors. The last reason is that the linearity
property of interconnects will be lost if one is using the power–current
definition for voltage. From Fig. 2, we can see that no matter what
value of the adjustable�e� is taken, TMFABC is more efficient
than Mur’s first-order ABC and its super algorithm. The reflection
coefficient of Mur’s first-order ABC with�e� = 10:0, reflection
coefficient of TMFABC with �e� = 6:0, and reflection coefficient
of super Mur’s first-order ABC with�e� = 11:0 as functions of
frequency are shown in Fig. 3, from which it is easy to see that as
expected in Section II, TMFABC improves Mur’s first-order ABC
more effectively at lower frequencies.

In order to illustrate that TMFABC is still efficient to absorb
evanescent waves, we apply TMFABC on the side boundaries and
the far-end boundary. On the top boundary, four ABC’s (i.e., Mur’s
first-order ABC, TMFABC, super Mur’s first-order ABC, and Mur’s
second-order ABC) have been used for comparison. The temporalEx

at4�x above the strip center andz = 10�z is given in Fig. 4, clearly
showing that TMFABC is efficient to absorb evanescent waves, but
the other three ABC’s are not.

IV. CONCLUSION

In this paper, we developed a twofold Mur’s first-order ABC by
applying Mur’s first-order ABC twice on two diagonally neighbor

Fig. 4. Comparison ofEx from four ABC’s applied on the top boundary
with the accurate result in the example.

nodes on thex–t, y–t, and z–t planes. The reflection error due to
Mur’s first-order ABC is canceled in TMFABC, thus the absorption
efficiency is greatly improved. TMFABC is efficient for absorbing
not only propagative waves, but also evanescent waves, and is very
convenient for implementation to multilayered structures. It improves
Mur’s first-order ABC more effectively at lower frequencies. The
performance improvement of TMFABC over some existing ABC’s
has been highlighted by an application example.
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